数据分析行业

  • 概述

现如今智能科技的发展的越来越快,对于人才的要求也越来越高,数据分析师是结合技术与业务的复合型人才,无论什么行业,都迫切需要这样的人才。随着数据科学和机器学习技能需求的增长,数据的采集和分析可以被人工智能代替,但最后做出决策的还是企业的数据分析师。


据 IBM 预测,未来3年,公司对Data类岗位需求量将猛增28%据麦肯锡公司的研究预测,2020年可以利用大数据分析来做出有效决策的人才缺口高达到150万,包括数据工程师、数据分析师、数据科学家、产品经理等具体岗位。


  • 什么是数据科学?

数据科学是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。 它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。 数据科学通过运用各种相关的数据来帮助非专业人士理解问题。(维基百科定义)


简单来说,数据科学是一个综合型的、跨行业性的新型领域,数据科学揭示趋势并产生见解,企业可以利用数据科学完善产品和服务,将数据转化为竞争优势,产生巨大的商业价值。


作为一门专业,数据科学还很年轻。它源自于统计分析和数据挖掘领域。数据科学期刊 于 2002 年首次发行,由国际科学委员会:科学和技术数据委员会出版。2008 年,“数据科学家”的头衔出现了,数据科学领域迅速发展起来。从此以后,尽管越来越多的学院和大学开始设立数据科学学位,但数据科学家依然短缺。数据科学家的职责包括:制定数据分析策略;准备要分析的数据;探索、分析数据并实施数据可视化;使用 Python 和 R 等编程语言用数据构建模型;将模型部署到应用中等。


  • 数据科学相关岗位及职能

1. 数据分析(业务/产品岗)

数据分析是数据行业中最常见的岗位,绝大多数人都是从这里开始自己的数据职业生涯的,主要岗位有:数据分析、商业分析、数据运营等。


主要职能:

  1. 找到搭建数据指标体系衡量产品

  2. 与管理团队合作,了解业务需求

  3. 使用数据库查询语言

  4. 数据清理与可视化报告

  5. 建立和优化指标体系

  6. 优化和驱动业务,推动数据化运营

  7. 找出可增长的市场或产品优化空间


所需技能:

数理统计知识、Excel、SQL、A/B test、可视化分析软件、商业意识、多维分析能力


2. 数据工程(技术岗)

数据工程有着较高的数理统计和编程方面的要求,主要岗位有:人工智能分析师、数据工程师、算法工程师等


主要职能:

  1. 数据架构的开发、构建和维护

  2. 处理错误日志和构建数据管道

  3. 数据清理

  4. 数据建模、验证与迭代优化

  5. ETL(提取转化加载)


所需技能:

数理统计知识、R、Python、Scala/Java、Hadoop/Spark/Hive、精通SQL/NoSQL、ETL


3. 数据科学(综合岗)

数据科学家兼顾数理统计、编程以及人工智能/机器学习建模等能力,具体岗位分为产品类,或者技术研究类。


主要职能:

  1. 数据预处理与清理

  2. 机器学习建模

  3. 解决商业问题

  4. 数据可视化展示


所需技能:

Excel、R、Python、R、常见数理统计算法以及模型


  • 数据分析工具及学习路径(整理自一亩三分地)

1.数理统计 & ML

2.分析软件

3. Product Sense

4.Project

Projects/Competitions - Kaggle Kernels :https://www.kaggle.com/

Problem Solving Challenges - HackerRank :https://lnkd.in/g9Ps2cb


关注我们

​微信公众号:hireme_now

服务咨询

​微信号:Queenie36wu

MTG

Email: svip2020.info@gmail.com   |   地址:950 Tower Ln, Foster City, CA, 94404

  • LinkedIn
  • Instagram
  • Facebook
  • YouTube